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Abstract
We present a theoretical analysis of kinematic effects that may strongly
influence the magnitude of Debye–Waller factors and inelastic reflection and
sticking coefficients describing thermal energy inert-gas-atom scattering from
surface phonons. Assessment of the effects discussed is carried out for inelastic
helium-atom scattering (HAS) from adsorbed Xe monolayers whose vibrational
properties have been extensively studied in recent HAS experiments.

1. Introduction

Various kinematic effects can strongly influence the magnitude of inelastic scattering
probabilities in atom–surface scattering. One of the most widely discussed effects of this
kind is the phenomenon of kinematic focusing of inelastically scattered beams [1] which was
first discussed in connection with the early theoretical interpretations of experimental data from
the fast-growing field of helium-atom scattering (HAS) from surface phonons [2]. Since then,
quite a few manifestations of the kinematic focusing effects in inelastic He-atom-scattering
time-of-flight (HAS TOF) spectra have been reported in the literature [3–6]. Theoretical aspects
of the various resonance and focusing effects which may act to enhance the scattered beam
intensity in specific scattering directions and for particular energy and parallel momentum
transfers have also been extensively studied and reviewed [7–13].

A typical example of strong kinematic effects in HAS TOF spectroscopy of surface
phonons [1] that is frequently cited in the introductory literature on HAS from surfaces [14,16]
pertains to the enhancement of measured one-phonon spectral peak intensities that are
associated with directional focusing of the scattered beam current. This phenomenon was
observed and can be most easily interpreted in the in-sagittal-plane scattering geometry in
4 Author to whom any correspondence should be addressed.
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which the initial and final projectile momenta Ki and Kf , respectively, lie in the same plane
normal to the surface. In this case the relation between the energy transfer, �E = Ef − Ei ,
and the parallel momentum transfer, �K = Kf − Ki, to phonons, the so-called scan
curve �E = �E(�K), acquires a particularly simple form. This enables a relatively
straightforward assessment of the dispersion of surface phonons to be made by comparing
the values of �E and �K corresponding to the one-phonon TOF spectral peaks with the
values obtained from intersections of the dispersion curve calculated for a j th phonon mode
branch, ω�K,j , and the scan curve for a given scattering geometry [14]. Hence, the following
introductory illustration of the most frequent kinematic focusing effect will be restricted to the
case of the in-sagittal-plane scattering geometry as this is also the most relevant to experimental
situations.

Using TOF spectroscopy one can detect just the projectile particles whose initial and final
states are the genuine scattering states, with the asymptotic forms of the incoming and outgoing
wavefunctions that approach plane waves far outside the surface, and are hence characterized
by the well-defined wavevectors ki = (Ki, kzi) and kf = (Kf , kzf ), respectively. In terms of
these quantum numbers the projectile initial and final energies are respectively given by

Ei = h̄2K2
i

2M
+

h̄2k2
zi

2M
, Ef = h̄2K2

f

2M
+

h̄2k2
zf

2M
. (1)

The corresponding scan curve for in-sagittal-plane scattering is expressed as

�E(�K) = Ef − Ei = h̄2

2M

( |Ki + �K|2
sin2 θf

− k2
i

)
, (2)

where M is the projectile mass and θf denotes the final scattering angle relative to the surface
normal. In the majority of TOF measurements carried out in the sagittal plane, the total
scattering angle θSD = θi + θf , where θi is the incident angle, is kept fixed for practical
purposes, so |�K| is uniquely determined from the values of |ki|, θi , and �E.

The surface-localized Rayleigh wave (RW) and longitudinal resonance (LR) phonons [15]
couple most strongly to the scattered He atoms and hence the effects of kinematic focusing have
been dominantly discussed in connection with the RW and LR spectral weights in the measured
TOF spectra. To illustrate the origin of the most frequently discussed case of kinematic
focusing associated with exchange of surface phonons, we note that the one-phonon excitation
intensities, as occurring in the measured spectra of inelastically scattered atoms, should be
proportional to a segment of the phase space of allowed final-state quantum numbers, i.e.
the wavevectors kf , of the projectile. Since the experimental TOF spectra are energy and
angle resolved they are integrated over all projectile final parallel wavevectors satisfying the
energy conservation in the scattering geometry of the experiment. This means that the energy-
conserving δ-functions appearing in theoretical expressions for the probabilities of state-to-
state projectile transitions involving one-phonon emission or absorption processes [14,16,17]
should be transformed so as to enable integration over the allowed parallel momentum transfers
confined to the scan curve [1, 14]; that is,

δ(�E(�K) ± h̄ω�K,j ) d(�E)

→
∑
�Kj

∂�E(�K)

∂�K

(
∂�E(�K)

∂�K
− ∂h̄ω�K,j

∂�K

)−1

δ(�K − �Kj) d(�K). (3)

Here �Kj denote the points of intersection of the scan curve with the j th-phonon-branch
dispersion curve. When two such intersections coalesce, i.e. when the scan curve osculates the
phonon dispersion curve, the factor multiplying the δ-function on the RHS of expression (3)
becomes singular. The singular behaviour can be evaluated for particular �E(�K) and h̄ω�K,j
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dependences and scattering geometries [1,14] and thereby the maxima in the scattering spectra
originating from this particular mechanism of kinematic focusing can be predicted [1,3,4] and
distinguished from other resonance and kinematic effects in atom–surface scattering [5, 6, 12].

The situation concerning the relevance of scattering geometry becomes more complex
if after the collision the projectile may remain localized at the surface in one of the bound
states of the static projectile–surface potential. This may occur either in selective adsorption
processes in which the energy of perpendicular projectile motion is converted into the energy
of motion parallel to the surface due to the exchange of a reciprocal-lattice vector G with the
crystal [2, 7], or in phonon-mediated processes in which a sufficient amount of the projectile
perpendicular energy is transferred to excite or absorb phonons that the projectile remains
localized or stuck in one of the bound states |n〉 of the perpendicular atom–surface potential
(for a review on the theoretical descriptions of sticking processes see [18, 19] and references
therein). The expression describing the change of projectile energy after making a transition
into a bound state with perpendicular energy εn < 0 reads

�E(�K) = Ef − Ei = h̄2(Ki + �K)2

2M
+ εn − h̄2k2

i

2M
. (4)

Here we shall avoid associating the term ‘scan curve’ with the �E(�K) dependence in
expression (4) because the transitions into bound states are not measured by the TOF
spectroscopy and therefore the projectile parallel momentum appearing in equation (4) need
not be confined to the sagittal plane for any detection purposes.

In prompt or one-step sticking processes the requirement that �K and �E obey the
parallel momentum and energy conservation in one-phonon exchange may introduce quite new
features in the scattering events, including manifestations of the various resonance and focusing
effects that may give rise to extrema in inelastic transition probabilities. In the following
sections we shall discuss kinematic effects that may strongly influence the probabilities of
inelastic reflection and sticking processes which are characterized by very low projectile
incident energies of the order of the well depth of the projectile–surface potential. These
probabilities constitute and determine the magnitude of the Debye–Waller factor (DWF) (or
factors) which give an overall measure of inelasticity of the scattering event in the quantum
regime. Since a detailed knowledge of the magnitude and properties of the DWF represents a
prerequisite for a general understanding of the phonon-assisted inelastic scattering and sticking
at very low incident energies, we shall study its behaviour as a function of kinematic parameters
that define the characteristics of the incident beam.

In section 2 we present the essentials of a theoretical formalism which enables a full
quantum mechanical treatment of inelastic scattering of inert-gas atoms from surface phonons.
We pay special attention to inelastic transitions leading to prompt sticking and discuss general
conditions in which the sticking mediated by excitation of phonons with Einstein- or Debye-like
dispersion may be affected by the focusing effects in final-state scattering channels. In section 3
we give an overview of the HAS studies and theoretical interpretations of vibrational properties
of the prototype system Xe/Cu(111) which supports Einstein- and Debye-like surface phonons
and hence is ideally suited for the analyses of the aforementioned focusing phenomena. In
section 4 we analyse the conditions under which inelastic scattering of He atoms from and
sticking on the Xe/Cu(111) surface can be strongly affected by kinematic factors and focusing
processes. The main conclusions of these analyses are summarized in section 5.

2. Description of inelastic atom–surface scattering and sticking in the scattering
spectrum formalism

Complete information on the inelastic reflection and sticking processes and the DWF in HAS
can be obtained from the expression for the energy- and parallel-momentum-resolved scattering
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spectrum Nki,Ts
(�E, �K). This expression gives the probability density that an inert atom

incident on a surface with momentum h̄ki exchanges an amount of energy �E and parallel
momentum �K in interaction with the phonons of the target [16, 22] that is in thermal
equilibrium at the temperature Ts . For the scattering conditions typical of thermal energy
HAS experiments, the uncorrelated phonon exchange processes dominate over the correlated
ones [16, 22] and the latter can be neglected to a very good approximation. In this regime the
scattering spectrum can be accurately calculated using the exponentiated Born approximation
(EBA) scattering formalism [16, 20–22]. This yields the EBA scattering spectrum [22]:

NEBA
ki,Ts

(�E, �K) =
∫ ∞

−∞

dτ d2R
(2πh̄)3

e(i/h̄)[(�E)τ−h̄(�K)R] exp[2WEBA
ki,Ts

(R, τ ) − 2WEBA
ki,Ts

(0, 0)],

(5)

where τ and R = (X, Y ) are the variables of the so-called EBA scattering or driving function
2WEBA

ki,Ts
(R, τ ), explicitly given below (cf equation (7)), which contains all the information on

uncorrelated phonon exchange processes in an atom–surface scattering event. After carrying
out the (τ, R) Fourier transform on the RHS of equation (5), the values of �K and �E should
be confined to the scan curve for a given scattering geometry, usually for fixed scattering
angles θi and θf in a particular experiment. This yields the desired theoretical intensities as
a function of �E and �K which can be directly compared with the experimental HAS TOF
intensities [16]. Here we have assumed a monoenergetic and monodirectional incident beam
of atoms whose motion is described by plane waves, because in the following sections we shall
focus the discussion on kinematic effects that can give rise to extrema in the total scattering and
sticking probabilities defining the DWF. Since these probabilities are obtained by integration
over all open final-state scattering channels without any restriction on the scattering geometry
embodied in the scan curves, the representation of the incident beam by a monochromatic plane
wave is a good approximation in view of the ki-dependence of the integrated quantities that
characterize the scattering system (see also the discussion at the end of this section). However,
in the comparisons of experimental energy- and angle-resolved HAS TOF spectra with those
calculated using expression (5), we shall convolute the theoretical spectra with a Gaussian that
models the overall energy resolution of the TOF apparatus in a particular measurement.

The quantity 2WEBA
ki,Ts

(R = 0, τ = 0) = 2WEBA
ki,Ts

in equation (5) gives the EBA expression
for the Debye–Waller exponent (DWE) characteristic of the inelastic scattering spectrum
studied [16]. It has also been shown [21] that this DWE represents the mean number of phonons,
n̄, excited in all inelastic scattering events characterized by the projectile initial momentum
h̄ki and the substrate temperature Ts . The corresponding DWF given by exp[−2WEBA

ki,Ts
] = e−n̄

represents, according to equation (5), a common attenuating factor for all the spectral features
in NEBA

ki,Ts
(�E, �K) for particular initial conditions (ki and Ts). The spectrum (5) also includes

the elastically scattered specular beam intensity that is given by [23]:

(NEBA
ki,Ts

(�E, �K))specular = e−2WEBA
ki ,Ts δ(�E)δ(�K). (6)

In the present description in which we assume a statically flat surface and linear projectile–
phonon coupling [12, 16, 22], the EBA scattering function in equation (5) takes the form:

2WEBA
ki,Ts

(R, τ ) =
∑

Q,G,j,k′
z

[|VKi,Q+G,j

k′
z,kzi

(+)|2[n(h̄ωQ,j ) + 1]e−i(ωQ,j τ−(Q+G)R)

+ |VKi,Q+G,j

k′
z,kzi

(−)|2n(h̄ωQ,j )e
i(ωQ,j τ−(Q+G)R)]. (7)

Here Q denotes the phonon wavevector in the first surface Brillouin zone (SBZ), n(h̄ωQ,j )

is the Bose–Einstein distribution of phonons of energy h̄ωQ,j at the target temperature Ts ,
and the summation over projectile final-state quantum numbers k′

z describing the motion
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in the z-direction is carried out over the continuum states |k′
z〉 for which Ek′

z
= Ezf =

(h̄kzf )2/2M > 0, and the bound states |n〉 of the static projectile–surface potential U0(z)

for which Ek′
z
= Ezf = εn < 0. The one-phonon emission (+) and absorption (−) scattering

probabilities |VKi,Q+G,j

k′
z,kzi

(±)|2 are calculated from the projectile–phonon interaction matrix

elements V
Ki,Ki±Q±G,j

k′
z,kzi

following the rule [16, 22]

|VKi,Q+G,j

k′
z,kzi

(±)|2 = |2πV
Ki,Ki∓Q∓G,j

k′
z,kzi

δ(Ef − Ei ± h̄ωQ,j )|2. (8)

Now, depending on whether the final energy of the projectile motion perpendicular to the
surface belongs to the continuous part of the spectrum, Ezf = (h̄kzf )2/2M > 0, or to the
discrete spectrum, Ezf = εn < 0, the singular energy-conserving δ-function on the RHS of
expression (8) should be appropriately treated and converted into a nonsingular expression so
as to enable summations over the final-state quantum numbers in expression (7).

In the case of continuum-to-continuum (c–c) inelastic transitions of the projectile, the
transformation of the RHS of expression (8) is performed according to [16, 22]

|2πV
Ki,Ki∓Q∓G,j

k′
z,kzi

δ(EKi∓Q∓G,k′
z
− EKi,kzi

± h̄ωQ,j )|2

= 1

h̄2

∣∣∣∣∣
V

Ki,Ki∓Q∓G,j

k′
z,kzi√

jzij ′
z

∣∣∣∣∣
2

δk′
z,kz(±)	(k2

z (±)), (9)

where 	(x) is the Heaviside step function, δk′
z,kz

is the Kronecker symbol, and

k2
z (±) = 2M

h̄2 (EKi
+ Ekzi

− EKi∓Q∓G ∓ h̄ωQ,j ), (10)

where the projectile currents normal to the surface in the entrance and inelastic scattering
channels are given by jzi = vzi/Lz and j ′

z = vf z/Lz, respectively, vz = h̄kz/M , and Lz denotes
the quantization length in the z-direction. The conversion expressed through equation (9)
enables the summations over (Q, G, k′

z) in equation (5) to be easily carried out, whereby all
quantization lengths cancel out from the final expression [14, 16, 22]. For the specific case of
He → Xe/Cu(111) collisions studied in the following sections, the calculation of the projectile–
phonon matrix elements V

Ki,Ki∓Q∓G,j

k′
z,kz

in terms of two-dimensional Fourier transforms vQ(z)

of pairwise He-adsorbate potentials, v(r), has been illustrated and discussed in detail in [12],
and here we only quote the result:

V
Ki,Q+G,j

k′
z,kzi

=
(

h̄

2NMXeωQ,j

)1/2

×
∫

dz χ∗
f (z)eκ(Q, j) ·

[
−i(Q + G), ẑ

∂

∂z

]
vQ+G(z − zκ)χi(z). (11)

Here MXe is the mass of the adsorbate Xe atom, zκ is the z-coordinate of the Xe atoms in
the adlayer, eκ(Q, j) is the polarization vector of the (Q, j)th phonon mode localized in the
adlayer, ẑ denotes the unit vector perpendicular to the surface, and χi,f (z) are the z-components
of the initial- and final-state wavefunctions of a He atom moving in the static projectile–surface
potential U0(z).

In the case of the continuum-to-bound (c–b) state inelastic transitions of the projectile, the
RHS of expression (8) is transformed so that the summation over final-state quantum numbers
n of the discrete bound states of the projectile–surface potential is performed according to [16]∑

n

(· · ·)|2πδ(EKi−Q−G + εn ± h̄ωQ,j − Eki
)|2

→
∑

n

(· · ·) 2π

h̄jzi

δ(EKi−Q−G + εn ± h̄ωQ,j − Eki
). (12)
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Concerning the kinematics of sticking transitions that affect the behaviour of the argument of
the energy-conserving δ-function in equation (12), we observe that in expressions (4) and (12)
both cases Ef −Ei < 0 and Ef −Ei > 0 are kinematically allowed. However, in the following
discussions we shall restrict our attention to the prompt sticking processes in which the energy
is transferred from the projectile to the target phonons such that the total change of the projectile
energy is negative, i.e. Ef −Ei < 0. The transitions for which Ef −Ei > 0 are less probable
at low surface temperature and render highly unstable final states that—due to the strong
coupling of phonons to a projectile moving parallel to the surface—will very quickly decay via
phonon emission into the ones for which the change of the total projectile energy is negative.
These correlated processes are of higher order in the coupling constant and the number of
exchanged phonons than the sticking processes involving one-phonon emission and satisfying
Ef − Ei < 0. As the latter processes are dominant at low temperatures, we shall not consider
the case Ef − Ei > 0 in the following treatment of kinematic effects associated with one-
phonon-assisted sticking transitions. It should also be noted that in one-dimensional scattering
models and in three-dimensional scattering models with zero parallel momentum transfer, all
the one-phonon-assisted prompt sticking transitions satisfy the condition Ef − Ei < 0.

The total EBA scattering function, 2WEBA
ki,Ts

(τ, R), that includes the prompt sticking
processes with Ef − Ei < 0 is obtained by combining the expression 2Wc→c

ki,Ts
(τ, R), which

encompasses the contributions from c–c transitions |kzi〉 → |k′
z〉, with the term

2Wc−b
ki,Ts

(τ, R) = 2π

h̄jzi

∑
Q,G,j,n

|V Ki,Ki−Q−G,j

n,kzi
|2δ(EKi−Q−G + εn + h̄ωQ,j − Eki

)

× [n(h̄ωQ,j ) + 1]e−i[ωQ,j τ−(Q+G)R], (13)

which describes the contribution from one-phonon-emission-assisted c–b transitions
|Ki, kzi〉 → |Ki − Q − G, n〉 for which Ef < Ei . Hence, only the term containing the
factor [n(h̄ωQ,j ) + 1] appears on the RHS of equation (13).

Analogously, we find for the total DWE

2WEBA
ki,Ts

= 2Wc→c
ki,Ts

+ 2Wc−b
ki,Ts

, (14)

where the prompt sticking correction 2Wc−b
ki,Ts

= 2Wc−b
ki,Ts

(τ = 0, R = 0) may represent a
significant contribution to the total DWE at low projectile incoming energies. As we shall
show in section 3, in the scattering regime in which the magnitude of Ei is comparable
to the projectile–surface potential well depth, the total probability for projectile transitions
into the bound states increases such that it may become comparable with or even exceed the
total probability for inelastic scattering into the continuum states (cf figure 9). Hence, in the
applications of the EBA formalism to calculate the DWF in the low-energy scattering regime,
it is essential to take into account the prompt sticking contribution given by the second term
on the RHS of equation (14).

The total sticking probability for the projectile with incoming energy Ei , or the prompt
sticking coefficient, is then given by

ski,Ts
=

∫ −Ei

−∞
d(�E)

∫
d2(�K) Nki,Ts

(�E, �K), (15)

from which sEBA
ki,Ts

is obtained by substituting the EBA scattering spectrum (5) on the RHS
of equation (15). Here it should be reiterated that the scattering function (7), the total
DWE (14) deriving from it, and the prompt sticking coefficient (15) are obtained by summation
(integration) over the quantum numbers of all open inelastic scattering channels. Therefore
these quantities describe integrated or global characteristics of the collision system that can
depend only on the kinematic parameters of the incident beam and the substrate temperature.
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Now, it is apparent from the structure of the expression on the RHS of equation (13) that a
singular character of the energy-conserving δ-function can give rise to maxima in the summed-
over or integrated expression for the sticking component of the total scattering function (7) for
specific values of the kinematic parameters, namely the incident angle and momentum of the
projectile. This can be easily illustrated on a simple example of Einstein and Debye models of
surface phonon frequency entering the argument of the δ-function on the RHS of equation (13).

Assuming first the Einstein type of dispersion in expression (13), namely ωQ = ω0 =
constant, and taking into account that the summation is carried out over the quasi-continuum
of Q-values, we can conveniently represent the δ-function on the RHS of equation (12) for the
case G = 0 in the form

δ(EKi−Q + εn + h̄ω0 − Eki
) = 2M

h̄2 δ(Q2 − 2QKi cos ϕ − k2
zi + 2M(h̄ω0 + εn)/h̄

2), (16)

where ϕ is the polar (in-surface-plane) angle between the vectors Ki and Q. By equating the
argument of the δ-function on the RHS of equation (16) with zero, one obtains a quadratic
equation in Q whose solutions are

Q± = Ki cos ϕ ±
√

(Ki cos ϕ)2 + [k2
zi − 2M(h̄ω0 + εn)/h̄

2]. (17)

These solutions are real if the discriminant

D(ki, ϕ, n) = (Ki cos ϕ)2 + [k2
zi − 2M(h̄ω0 + εn)/h̄

2] (18)

is positive or zero. Using these definitions we can transform the energy-conserving δ-function
to the form

δ(EKi−Q + εn + h̄ω0 − Eki
) = C[α+(ki, ϕ, n)δ(Q − Q+) + α−(ki, ϕ, n)δ(Q − Q−)], (19)

where C is a constant depending on the units in which the energies and wavevectors are
measured, and

α±(ki, ϕ, n) = 	(D(ki, ϕ, n))	(Q±)

2
√

D(ki, ϕ, n)
. (20)

Now, it is seen that expression on the RHS of equation (19) can give rise to singularities or
maxima in the sticking component of the scattering function and the DWE whenever either
of α±(ki, ϕ, n) becomes singular or large for specific values of the kinematic parameters that
define the scattering conditions. This is illustrated in figure 1 in which α+(ki, ϕ, n) is shown as a
function of ki and ϕ characteristic of the scattering conditions in He → Xe/Cu(111) experiments
described below. Thus, for incident scattering angle θi = 50◦ the quantity α+(ki, ϕ, n) exhibits
singular behaviour in a limited segment of the (ki, ϕ) phase space (cf figure 1(a)) which may
give rise to focusing effects that act so as to enhance the prompt sticking events in restricted
intervals of final-state quantum numbers over which the summation in expression (13) is carried
out. Such features are reflected in the exchange of phonons with wavevectors pointing in the
azimuthal direction defined by the location of maxima of α±(ki, ϕ, n). On the other hand, at
normal incidence θi = 0 all azimuthal directions are equally preferred as regards the kinematic
parameters of the incident atom (cf figure 1(b)) and the only discrimination among the various
directions may then arise if there exists an anisotropy in other factors entering the interaction
matrix elements and the scattering function.

A very similar simple analysis can be also made for the Debye model of dispersion
ωQ = cQ in expression (13). Like in the case of Einstein dispersion, the argument of the
energy-conserving δ-function in the expression on the RHS of equation (13) gives rise to
a quadratic equation with solutions Q± in terms of which the δ-function can be expressed
in the Q-space, in a fashion analogous to equation (19). Again as in the case of Einstein
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Figure 1. Plots of α+(ki, ϕ, n = 1) (cf equation (20)), corresponding to the He-atom transition
into a bound state εn=1 = −1.551 meV of the static He–Xe/Cu(111) model potential [25] through
emission of an Einstein phonon of energy h̄ω0 = 2.62 meV. The magnitude of the incident
wavevector |ki| is measured in inverse bohrs a−1

B (atomic units). The angle of incidence of the He
atom in (a) is θi = 50◦ relative to the surface normal, and in (b) θi = 0◦.

phonon dispersion, the prefactors α±(ki, ϕ, n) calculated for the Debye dispersion may exhibit
maxima in some segments of the phase space of kinematic parameters and thereby give rise to
preferential prompt sticking transitions into restricted intervals of final-state quantum numbers.
Calculations in which this effect proved important were carried out for the RW-mediated
sticking of noble-gas atoms on a Cu(111) surface [24]. Here we show in figure 2(a) the
behaviour of α+(ki, ϕ, n) for the Debye model of dispersion of the RW characteristic of the
Xe(111) surface for θi = 50◦ (the value of α−(ki, ϕ, n) is equal to zero for the scattering
conditions considered). By contrast, for angle of incidence θi = 0 there is no preferential
direction for wavevectors of emitted Debye phonons (cf figure 2(b)), in complete analogy with
the case of Einstein phonons.
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Figure 2. A plot of α+(ki, ϕ, n = 3) corresponding to the He-atom transition into a bound state
εn=3 = −0.095 meV of the static He–Xe(111) model potential [12] through emission of a Debye-
like surface phonon with sound velocity c = 6.46(aB/h̄) meV. The magnitude of the incident
wavevector |ki| is measured in inverse bohrs a−1

B (atomic units). The angle of incidence of the He
atom is θi = 22.5◦ in (a) and θ = 0◦ in (b).

In the present description of atom–surface scattering the impinging beam of atoms has
been assumed monochromatic and monodirectional so that the projectile motion was described
by a single quantum number ki appropriate to an incoming plane wave. That is, the singular
character of the functions α±(ki, ϕ, n) defined in equation (20) is relevant here in connection
with the range of final-state quantum numbers over which the summation (integration) in
expression (7) is carried out. As this range substantially exceeds the energy and angular
resolution of the HAS TOF apparatus, no summation or averaging over the initial projectile
states |ki〉 was included in the calculation of the scattering spectrum (5). On the other hand, for
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incident beams appropriately described by wavepackets with a finite spread of the initial-state
wavevector, such summations may become necessary in the interpretation of HAS TOF spectra
that are energy and angle resolved in the exit channels and hence may be strongly affected
by the focusing effects that depend on the beam characteristics in the entrance channel. The
type of focusing effects arising in connection with the angular spread of the incident beam and
their consequences for the sticking processes have been discussed in [13]. These effects are
complementary to the ones briefly illustrated above and should also be included in quantitative
interpretations of the energy- and angle-resolved HAS TOF spectra involving incident beams
with finite energy and angular spread.

3. A monolayer of Xe atoms on Cu(111): the prototype system for studying dispersive
and nondispersive surface phonons

Benchmark examples of systems that support nondispersive (Einstein-like) and dispersive
surface phonons are realized by adsorption of monolayers of Xe atoms on three low-index Cu
crystal surfaces (for an exhaustive list of references see [16]). Since these systems have been
extensively studied and characterized by the various surface science techniques, they naturally
lend themselves to analyses of the role that a combination of kinematic factors and phonon
excitations may play in atom–surface scattering. In the following we shall restrict our attention
to the system Xe/Cu(111).

The various aspects of HAS studies of the commensurate monolayer system (
√

3 ×√
3)R30◦ Xe/Cu(111) at a substrate temperature around Ts = 60 K have been reported

in [25–28]. Earlier experiments revealed Xe adsorption on top of Cu atoms [29] for
the commensurate Xe monolayer structure [30] that is stable above 48 K at which the
incommensurate–commensurate structural phase transition takes place [31].

The right-hand side panel in figure 3(a) shows the structure of the commensurate
(
√

3 × √
3)R30◦ monolayer of Xe atoms adsorbed on Cu(111) [29, 30] and indicates the

two principal directions (azimuths) of the substrate crystal surface. The left-hand-side panel
shows the first SBZ of the substrate (dashed lines) and the two-dimensional BZ of the
adlayer (full lines). Figure 3(b) shows an angular distribution of He atoms scattered from the
(
√

3 × √
3)R30◦ Xe/Cu(111) surface for incident wavevector ki = 9.2 Å−1 (Ei = 45 meV)

and the substrate temperature Ts = 60 K along the [110] azimuth relative to the substrate
surface. The intensities are normalized to the specular peak height. In addition to the (1, 0)

diffraction peak, two additional, Xe (1/3, 0) and (2/3, 0) diffraction peaks of order one third
were observed [26]. The sharpness of the peaks and relatively low background indicate the
presence of a well-ordered, largely defect-free Xe overlayer. Hence, the Xe adlayer may
be considered planar and periodic with hexagonal symmetry and this is then reflected in its
vibrational properties. The adlayer vibrational modes can be classified as dominantly in-plane
polarized (longitudinal (L) and shear horizontal (SH)) and shear vertical (S) [32]. The planar
character and the flatness of the Xe adlayer (from the viewpoint of He–surface interaction)
make possible the application of the theoretical model developed in the preceding section to
interpret the measured TOF spectra as well as to analyse the effects of kinematic factors on
the quantities such as the DWFs and sticking probabilities.

Figure 4 shows typical He-atom TOF spectra for the (
√

3×√
3)R30◦ Xe/Cu(111) surface

along the [112̄] substrate azimuth (i.e. along the �̄K̄Xe direction of the superstructure), for three
different He-atom incident energies spanning the transition from a single- to a multi-quantum
scattering regime. The spectrum at the lowest incident energy (Ei = 9.9 meV) is typical of a
single-phonon scattering regime and is dominated by two well-defined peaks at ±2.62 meV
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Figure 3. (a) Right panel: the structure of the (
√

3 × √
3)R30◦ monolayer of Xe atoms (shaded

circles) on a Cu(111) surface, with examples of two high-symmetry directions (azimuths) in the
substrate surface plane. Left panel: two-dimensional BZs of the Cu(111) surface (dashed lines)
and of the Xe adlayer (full lines). (b) He-atom angular distribution along the [11̄0] azimuth of the
substrate from the (

√
3×√

3)R30◦ Xe monolayer on Cu(111) for incident wavevector ki = 9.2 Å−1

(Ei = 45 meV) and surface temperature 60 K.

on the energy loss and gain sides of the TOF spectrum, respectively. Within the experimental
error these energies do not change in the interval between �K = 0.1 and 0.3 Å of the first
SBZ of the superstructure in which the signal was detectable. In accordance with previous
works on noble-gas atoms adsorbed on other substrates [33–35], this mode was assigned to
the excitation of collective vibrations of Xe atoms with a polarization vector vertical to the
surface and designated the ‘S-mode’. The lack of dispersion indicates that the frequency of the
vertically polarized phonon is mainly determined by the adsorbate coupling to the substrate,
with only a weak coupling to adjacent adsorbates. Deviation from a dispersionless behaviour
occurs only at the intersection with the substrate Rayleigh mode [35, 36]. The energy of this
Einstein-like or S-mode (h̄ω0 = h̄ωS = 2.62 meV [25–27]) is slightly larger than for the
(110) face of Cu (h̄ωS = 2.5 meV [37]). The small but significant deviation of 0.12 meV is
consistent with a slightly deeper potential well for Xe on Cu(111) and Cu(001) (in the latter
case h̄ωS = 2.71 meV [25, 26]) than on Cu(110) [38, 39].

In addition to the intense S-peaks, the measured He → Xe/Cu(111) spectrum also reveals
the presence of a weak but clearly resolved feature (labelled ‘L’) near the elastic or zero-
energy loss line. The energy of this mode changes with the angle of incidence θi and thus
shows dispersion. The relative intensity of this mode was found to decrease strongly with the
wavevector, so the corresponding data points could only be obtained for parallel wavevector up
to one third of the distance between the �̄ and K̄Xe points in the first BZ of the superstructure.
Since in the TOF spectra displayed the energy of the L-mode is always significantly below
that of the lowest surface phonon of the clean Cu(111) surface, this must be a pure Xe adlayer-
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Figure 4. A series of measured HAS TOF spectra for a monolayer of Xe on Cu(111) along the
[112̄] direction of the substrate surface for three representative He-atom incident energies. θi and
θSD denote the angle of incidence and the fixed total scattering angle, respectively. The scattering
parameters are shown in the insets.

induced mode which cannot couple to the substrate for wavevectors over a wide range of
the SBZ. Since for the (

√
3 × √

3)R30◦ Xe/Cu(111) system the [112̄] direction has a high-
symmetry mirror plane, the vibrational modes are partitioned into two orthogonal classes [32].
Two thirds of the modes are polarized in the sagittal plane (including the adlayer-induced S- and
L-modes). The remaining one third of the modes are polarized in the surface plane and normal
to the mirror plane and designated shear horizontal modes or ‘SH-modes’. The three possible
adlayer-induced orthogonal modes with the wavevector in the [112̄] direction (cf figure 3(a))
are thus characterized by either a combination of the components with S- and L-polarization or
pure SH-polarization. Combining the symmetry selection rules pertinent to the probabilities
of excitation of in-plane phonons at ideal surfaces [14, 16] with the fact that the data were
recorded in the first SBZ of the superstructure and in the sagittal plane which coincides with
the high-symmetry plane of the Xe/Cu(111) system, the observation of the SH-mode under
these experimental conditions can be ruled out. Hence, this mode is tentatively assigned to the
longitudinal mode of the adlayer which is known to couple to the scattered He atoms under
similar conditions [14,17]. However, as demonstrated for NaCl, the SH-modes can be excited
along a high-symmetry direction in the second SBZ [40].
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Figure 5. Phonon dispersions for the Xe/Cu(111) surface along the [112̄] direction relative to the
substrate as determined by HAS (full circles). The solid line denotes the best fit achieved for the
longitudinal (L) mode in the Xe adlayer and the dashed–dotted curve is the result for the L-mode
using the gas-phase Xe–Xe potential. The theoretical dispersion curve for the vertically polarized
S-mode is marked by the long-dashed curve and that of the Rayleigh phonon and the projected
bulk phonon edge of the Cu substrate by the full thin and dotted lines, respectively. For the force
constants, see table 1.

The other two spectra in figure 4 demonstrate the transition from a single-phonon to
a multiphonon scattering regime as Ei is increased. This transition takes place already at
rather low He-atom incident energies due to the very low excitation energies of the adlayer-
induced S-modes whose vertical polarization gives rise to a strong projectile–phonon coupling.
Although some single-phonon features are still discernible at incident energy Ei = 21.4 meV,
both spectra are dominated by a number of uniformly spaced peaks at energies ±n×2.62 meV.
For Ei = 45.1 meV the true multiphonon scattering regime is reached because the intensity
of the elastic peak is smaller than that of the multi-quantum S-peak for n = 2.

It is noteworthy that the S-mode multiphonon lines are all, to within experimental error,
located at integral multiples of a fundamental frequency, ωS = 2.6–2.7 meV/h̄. At first
sight this seems to imply a very harmonic Xe–Cu potential since anharmonic shifts, which
are expected to be negative, would produce overtone energies smaller than the corresponding
multiples of the fundamental frequency ωS . However, the theoretical analyses of the Xe–metal
interactions [38, 39, 41] show that the potential is highly anharmonic but, as is demonstrated
below, the multiple spectral peaks can be explained by multiple excitation of delocalized
phonon modes which involve the lowest harmonic states of many adatoms rather than a single
higher anharmonic state localized on a single adatom. In this case there appears no anharmonic
shift as each multiphonon excitation is distributed over the Xe atoms in the adlayer.

The experimentally determined dispersion curves are shown in figure 5. The vertically
polarized S-mode exhibits negligible dispersion over the major part of the SBZ except at the
point of avoided crossing with the substrate RW [33, 34]. The L-mode for the commensurate
Xe/Cu(111) structure exhibits a zone-centre gap of about 0.5 meV [27]. In order to corroborate
the assignments of the modes in the He → Xe/Cu(111) TOF spectra and theoretically analyse
their dispersion and excitation intensities, a full lattice dynamics calculation of the vibrationally
coupled (

√
3 × √

3)R30◦ Xe/Cu(111) system has been carried out. In view of independent
experimental evidence [29], the Xe atoms were placed in on-top sites on both sides of a 40-
layer-thick slab of substrate atoms. The interaction between nearest-neighbour Cu atoms was
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Table 1. The values of the radial, β1, and tangential, α1, force constants for the first-nearest
neighbours used in the analysis of phonon dispersion curves of the commensurate Xe/Cu(111)
system. Note a significant softening of βXe−Xe

1 relative to the value of 1.67 N m−1 obtained
using gas-phase Xe–Xe HFD-B2 potentials [43]. In this system Xe atoms are adsorbed in a
(
√

3 × √
3)R30◦ superstructure on top of Cu atoms [29].

Force constant (commensurate Xe/Cu(111) system) Value (N m−1)

βCu−Cu
1 28.0

βCu−Xe
1 3.7

αCu−Xe
1 0.086

βXe−Xe
1 0.5

αXe−Xe
1 0

accounted for by a single radial force constant βCu−Cu
1 = 28.0 N m−1 as obtained from a fit of

the bulk Cu phonon dispersion curves [42]. The other parameters describing the coupling of Xe
atoms to the nearest-neighbour Cu substrate atoms was fitted to the dispersion curves, which
yielded a radial force constant βCu−Xe

1 = 3.7 N m−1 and a tangential force constant αCu−Xe
1 =

0.086 N m−1. Assigning the longitudinal character to the observed L-mode to comply with the
above-discussed symmetry selection rules, the interaction between the atoms in the adlayer
could be described by a radial force constant βXe−Xe

1 = 0.5 N m−1 and a tangential force
constant αXe−Xe

1 = 0. The values of these force constants are presented in table 1. The results of
the full dynamical matrix calculation for the dispersion of the surface-projected S- and L-modes
are also shown in figure 5 and they reproduce the experimental data very satisfactorily. The
radial Xe–Xe force constant βXe−Xe

1 = 0.5 N m−1 resulting from this procedure is, however,
significantly smaller than the value predicted from the highly precise HFD-B2 gas-phase
potential [43], βXe−Xe

HFD = 1.67 N m−1, which produces a significantly steeper dispersion curve
for longitudinal phonons denoted by the dash–dotted curve in figure 5. The complete results of
the present dynamical matrix calculation for phonon dispersion in the Xe/Cu(111) system are
shown in figure 6(a). This calculation also enables us to trace how each phonon mode of the
composite system is localized at the surface (i.e. within the adlayer) and how the typical surface
modes may become delocalized for certain values of the wavevector. A measure of the adlayer
localization of the S-, L-, and SH-modes near the centre of the first BZ of the superstructure
is shown in figure 6(b). Further important information concerning the percentage of vertical
component of polarization of the L-mode in the same region, indicating the mode ellipticity,
is illustrated in figure 6(c). However, the physical origin of the unexpected large softening of
the radial Xe–Xe force constants introduced to reconcile the symmetry requirements with the
experimental data remains unclear. A clue to this effect may be provided by the peculiar
electronic structure of the Cu(111) surface which supports surface electronic states with
corresponding electronic wavefunctions extending far across the adsorbed Xe atoms [44].

In the present approach the calculation of the matrix elements of the projectile–phonon
interaction in expression (8) is based on the pairwise summation of projectile–adsorbate pair
pseudopotentials v(rHe−rXe) described in detail in [16] and [25]. The two-dimensional Fourier
transform of the pair pseudopotential, v(Q, z), is modelled by a Morse potential [16, 25]:

v(Q, z) = AcD[e−2β(z−zm)e−Q2/2Q2
c − 2e−β(z−zm)e−Q2/Q2

c ]. (21)

Here the parameters D, β, and zm are listed in table 2, Ac denotes the area of the unit cell of
the superstructure, and the cut-off wavevector is given by Qc = √

2β/zt where zt is the value
of the projectile atom turning point in the averaged static projectile–surface potential U0(z)

consistent with expression (21). This potential is given by
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Figure 6. (a) Dispersion curves for the Xe/Cu(111) system along the [112̄] direction calculated
using the dynamical matrix approach to a slab of 40 Cu layers with Xe atoms in on-top positions on
each side. For the force constants, see table 1. Note that the S-, L-, and SH-mode dispersion curves
are detached from the bulk quasi-continuum. (b) Surface localization of Xe-induced S-, L-, and
SH-modes on the adlayer expressed through the sum of components of the respective polarization
vectors in the adlayer. Numbers below the symbols 	 denote frequencies (in meV) of the S-mode.
(c) Percentage of vertical polarization of the L-mode in the Xe adlayer on the Cu(111) substrate,
or L-mode ellipticity, as a function of the L-phonon wavevector. Numbers in parentheses above
the full squares denote the fractional adlayer localization of the L-mode.

U0(z) = D{exp[−2β(z − zm)] − 2 exp[−β(z − zm)]}. (22)

Using the formulae for calculation of inelastic scattering intensities described in the
preceding section and expressions (21) and (22) for the pseudopotentials, one can proceed with
the evaluation of scattering spectra for comparison with the experimental data available for the
He → Xe/Cu(111) collision system. The theoretical spectra have been additionally convoluted
by a Gaussian whose width amounts to 2% of the incoming beam energy. This mimics
the overall experimental resolution of the HAS TOF apparatus on which the experiments
have been carried out [25–27]. A comparison of the experimental and the thus-calculated
spectral intensities of the L- and S-modes (including the EBA correction for the S-phonon
intensities [16,28]) in the single-phonon scattering regime of HAS from Xe/Cu(111) is shown in
figure 7. Here the component due to elastic diffuse scattering from defects, not accounted for by
the scattering formalism described in section 2, has been modelled by a Gaussian of the height
that together with the calculated elastic peak intensity matches the height of the experimental
elastic peak. This aids comparison of the calculated L-peak intensities with experiment because
the finite width of the elastic peak can also contribute to the background intensity of the L-peaks
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Figure 7. Comparison of experimental and calculated S- and L-mode intensities in the single-
phonon scattering spectra typical of He → Xe/Cu(111) collisions.

Table 2. Parameters for the best-fit Morse potentials v(Q, z) and U0(z), equations (21) and (22),
respectively, for modelling the He-atom interaction with the Xe/Cu(111) surface.

D (meV) β−1 (Å) zm (Å)

6.60 0.8202 3.49

measured close to the no-loss line. With this proviso, a good agreement between experimental
and theoretical results is achieved, which illustrates the consistency of the present interpretation
of the inelastic peaks in the HAS TOF spectra from Xe/Cu(111) surface.

As the coupling of He atoms to S-modes is much stronger than that to the L-modes [14,
16, 17], the multiphonon scattering spectra will be dominated by a series of multi-quantum
S-peaks. All other dispersive modes may only add weak structures on top of this basic one.
Eventually, these structures will turn into a Gaussian-like background [16] in the limit of high
incident projectile energies. The multiphonon scattering spectra from Xe/Cu(111) adlayers
have been studied in detail in [25] and [26]. Figure 8 shows a comparison of experimental
data with the EBA multiphonon spectrum calculated by consistently employing the potentials
from the corresponding single-phonon calculations. The multiphonon He → Xe/Cu(111)
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Figure 8. Comparison of experimental and calculated EBA multiphonon scattering spectra typical
of He → Xe/Cu(111) collisions using the same potentials and dispersion relations as in figure 7.

spectrum can be viewed as a convolution of a series of well-defined equidistant peaks, signifying
the uncorrelated multiple emission and absorption of nondispersive S-phonons (and not the
overtones [25]), superimposed on a background arising from the multiple excitation of L- and
also SH-phonons which outside the one-phonon scattering regime are no longer constrained
by the symmetry selection rules.

4. Kinematic effects in the intensities of inelastic transitions in He → Xe/Cu(111)
collisions

The comparison of experimental and theoretical HAS intensities displayed in figures 7 and 8
is very satisfactory and hence provides a test of the reliability of the model developed in
section 2 for the description of inelastic He → Xe/Cu(111) scattering. This enables us to use
the thus-verified theoretical approach to investigate the effects of kinematic factors on inelastic
collisions and sticking processes in the collision system He → Xe/Cu(111) under the various
scattering conditions. To this end we have examined the behaviour of the DWE (14) (and
thereby also of the scattering function (7)) in the various collision regimes, as this provides
important information on the effects of kinematic factors on the magnitude of integrated
quantities relevant to the description of inelastic scattering.

Figures 9(a) and (b) show the calculated dependence of the DWE, equation (14), on
the incident energy of He atoms scattered from the Xe/Cu(111) surface at the temperature
Ts = 0. In the zero-temperature limit all the sticking processes are phonon-emission-assisted
processes and are prompt (i.e. Ef −Ei < 0 in equations (4) and (12)) and hence the kinematic
effects associated with one-phonon emission processes are easily discernible. In view of the
earlier finding that the contribution of S-phonons to the inelastic scattering spectra is by far
the most dominant one (cf [16]), we have taken into account in the present calculation of the
DWE only the projectile coupling to S-phonons. The calculations have been carried out for
θi = 50◦ (figure 9(a)) and θi = 0 (figure 9(b)), i.e. the incident angles for which the singular
properties of the energy-conserving δ-functions in equation (19) were examined and illustrated
in figure 1. As is clearly seen in these plots, the magnitude of the DWE at low incoming energies
(Ei < 6 meV) is strongly affected by the c–b transitions. The two maxima in 2Wc−b

ki,Ts
appear
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Figure 9. Plots of the DWE (equation (14)) shown as a function of He-atom incident energy Ei and
at zero substrate temperature, for two incoming angles (a) θi = 50◦ and (b) θi = 0◦. Contributions
from c–c and c–b transitions are denoted by short-dashed and long-dashed curves, respectively.
Insets in (a) indicate relative contributions to the DWE from different parts of the SBZ at low
incident energies when only the c–b transitions are possible, and at higher incident energies when
the c–c transitions dominate. Note that in the case of normal incidence θi = 0◦, contributions from
all directions of the SBZ give equal contributions to the DWE.

at Ei = εn + h̄ωS , for ε2 = −0.132 meV (smaller maximum) and ε1 = −1.551 meV (larger
maximum), whereas the bound state ε0 = −4.528 meV is inaccessible through emission of
a single phonon quantum h̄ωS = 2.62 meV. The drop of 2Wc−c

ki,Ts
to zero for Ei < 6 meV in

figure 9(b) is a consequence of the fully quantum treatment of the scattering event. This is
in contrast to the recoilless trajectory approximation (TA) calculations in which this feature
is absent (cf the discussion following figure 4 in [22]). The analogous drop in figure 9(a)
is much slower due to the less-stringent conditions on the phase space of allowed final-state
quantum numbers in the case of non-normal incidence of the projectile. The insets in figure 9(a)
illustrate that for c–b transitions at low Ei and non-normal projectile incidence, the preferred
parallel momentum exchange �K with phonons is directed (i.e. effectively focused) towards
negative values, whereas at higher Ei when the c–c transitions prevail this trend is much less
pronounced. The behaviour of 2Wc−c

ki,Ts
in the interval Ei > 6 meV, in which it starts growing

linearly with Ei , is an expected manifestation of the behaviour of interaction matrix elements
which tend to a semiclassical limit as Ei is increased.

Comparison of figures 9(a) and (b) reveals another interesting feature. Inspection of the
magnitudes of c–c contributions to the DWE shows that at higher incident energies they scale
as 2Wc−c

ki,Ts
(θi = 50◦, Ei) 
 2Wc−c

ki,Ts
(θi = 0, Ei cos2 θi), as one may expect in the semiclassical

limit. However, this ceases to be so for the c–b transitions because of a very different effect
of kinematic factors on 2Wc−b

ki,Ts
. As is evident from comparison of the values of DWE at

Ei = ε1 + h̄ωS in figures 9(a) and (b), the different kinematic conditions give rise to different
final-state focusing effects and thereby to different values of 2Wc−b

ki,Ts
which, in turn, do not

follow a simple scaling behaviour.

5. Summary

Taking the example of a prototype monolayer system Xe/Cu(111), whose surface vibrational
modes with Einstein and Debye types of dispersion have been extensively studied by means
of HAS, we have investigated how the kinematic conditions affect the magnitude of integrated
quantities which play a fundamental role in the interpretations of phonon-mediated inelastic
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atom–surface scattering and sticking processes. We have shown that in the case of energy
transfer from the projectile particle to nondispersive Einstein phonons, the prompt sticking
coefficients are strongly affected by the focusing effects in the scattered channels and that
these effects are sensitive to the initial kinematic conditions. This phenomenon manifests
itself in specific low-energy behaviour of the DWE and the DWF as the projectile energy and
angle of incidence are varied. The results of a detailed quantum mechanical calculation of the
DWE for the He → Xe/Cu(111) collision system carried out in section 3 and shown in figure 9
clearly demonstrate the focusing-induced deviations from the semiclassical behaviour that is
often uncritically invoked in interpretations of HAS experiments.
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